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Abstract

Prototyping is an important technique in software development for early exploration and validation
of requirements. When prototyping concurrent behavior, we must be able to embrace a wide spectrum
of models used to construct parallel programs, reflecting a variety of underlying system architectures.
In this paper we present Proteus, a language suitable for prototyping parallel and distributed programs.
Proteus starts with the high-level set-theoretic notations of SETL and REFINE. We then extend this base
with the barrier-merge parallel construct, which partitions the variables used for communication in its
shared-memory model into shared and private sets. Each parallel process receives an independent copy of
the private variables. These private copies are independently updated, and may be merged into the global
state at specifiable barrier synchronization points: at these points a portion of the merged state may be
reflected back into each private state. We envision a layered [anguage structure to express the various
programming models, such as communicating sequential processes and data-level parallelism, in terms of
this common foundation. A common foundation also facilitates the prototyping of heterogeneous systems
whose concurrent parts are programmed following different models.

1. Introduction

1.1. Motivation

In this paper we describe Proteus, a language especially suited for prototyping algorithms and
programs for parallel and distributed environments. What we present here is very much ongoing
work, one part of a group effort by five research teams in a DARPA-sponsored program to develop
a Common Prototyping Language (CPL) and Common Prototyping System (CPS). In its current
incarnation, Proteus provides a high-level set-theoretic notation together with a sparse but powerful
set of mechanisms for controlling parallel execution, relying fundamentally on an underlying shared-
variable model of concurrency. These mechanisms serve to support diverse concurrent programming
styles within a single logical framework. Such a common foundation for concurrency is an important
goal, especially within the realm of prototyping. To understand why this is so, and our overall
language design goals, we must understand the special needs of prototyping in general. S
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Prototyping can play an extremely useful role in the complex process of building large-scale
software systems, serving both to rapidly ezplore alternatives when evolving an idea of the system
requirements and to validate the requirements specifications so evolved. This experimentation and
feasability demonstration helps to identify our needs and to assess and manage risk in the software
engineering process. As a vehicle for such early exploration and validation, a prototyping language
must satisfy a number of needs unique to the broad spectrum of prototyping activities.

Firstly, it should facilitate rapid programming by providing the user with an integrated set of
language features which are flexible, powerful, and easy to use and understand. We can achieve this
expressive power and semantic simplicity by using a very high-level language with a small number of
simple features. Moreover, since the intent is not to produce production-quality programs, we may
to some degree sacrifice efficiency for this ease of programming. On the other hand, however, we
do want to refine the experimental prototype into the production version. This desire for graceful
transition goes beyond earlier “spiral process models” of sofware development which — although
they viewed prototyping as playing an important role by cyclically embodying, testing, and evolving
the requirements throughout the software life cycle — still threw away the prototypes before coding
the product [Boeh85]. To support refinement as well as early executable specification, the high-level
dialect must not be constrained by translatability to a particular target production language or
architecture. Furthermore, in keeping with the caveat that we should whenever possible assemble
from existing building blocks rather than create anew (the component-based approach), we must
allow the incorporation of possibly heterogeneous existing applications into a new prototype. This
requires some provision for interfacing differing modules, and the ability of the prototype to express
its algorithms at some common fundamental level. Lastly, we must provide for the expression of
complex execution stategies including time-constrained, distributed, and parallel execution.

1.2. Varieties of concurrent programming

It is particularly important to be able to handle concurrency within a common prototyping language.
The prototyping community needs to be able to prototype inherently concurrent behavior, to express
algorithms and new concepts of parallel computing, and to evaluate the performance of concurrent
systems. We also need to be able to write programs for new parallel machines, so as to use the
prototyping language as an exploratory vehicle for new technology.

Yet devising a single framework for handling concurrency is no easy task. Over the past twenty
years a great variety of parallel machine architectures have been proposed or developed that are
of importance. These machines range the gamut from synchronous to asynchronous execution of
process events, and from shared to distributed address spaces [Bal89]. There have also been proposed
a variety of abstract theoretical models of computation to express and analyze algorithms for
large classes of machines (e.g., the PRAM [Fort78)]). Not surpisingly, many different languages are
currently used to construct parallel programs, reflecting this diversity of underlying machine models.
Each of the specific language features for parallelism — for specifying parallel execution and how
parallel computations are mapped onto physical processors, for synchronization, for communication,
and for exception handling — mirror to some extent the underlying organization of the machine.
For example:




¢ Distributed systems - Applications for loosely-coupled distributed systems, like a collection
of workstations connected via an ethernet, are programmed using the concepts of processes and
blocking communication by message-passing. Languages for these asynchronous distributed-
state systems include OCCAM (CSP) [Inmos87, Hoar85) and Strand [Fost90]. Some languages
commonly used for distributed systems may assume a logical model which differs from the
physical architecture. For example, Linda assumes a nondistributed state in the form of a
“distributed data structure”, a tuple space shared among processes.

¢ Shared-memory multiprocessors -~ Applications for shared-memory multiprocessors, like
the BBN Butterfly or the Sequent, are programmed with languages that support shared vari-
ables with access-exclusion and synchronization mechanisms like monitors, such as found in
Concurrent Pascal [Brin75]. A theoretical model for these asynchronous shared-memory ma-
chines might be found in the APRAM [Cole89, Cole90, Gibb89].

e Highly-parallel processors - Applications for highly-parallel machines such as the CM-
2 or the iPSC are programmed using data-parallel operations and barrier synchronization.
Languages used to program existing machines such as the CM and the UltraComputer include
specific features that reflect the fundamental organization of the machine. The PRAM presents
a family of abstract computational models, based on lock-step execution and synchronously
updated shared memory, for this class of machines [Fort78].

1.3. Towards a common foundation

This proliferation of machines and programming languages for parallel computing creates a particu-
larly strong need for a common prototyping language in which parallel applications can be developed
relatively independently of the target machines, and specialized to reflect particular target machines
as desired. We have developed a common foundation for these various machine models. Since
the foundation is small and spartan; a layered language is envisioned in which higher-level control
abstractions can be built up syntactically using syntax extension features of the notation and seman-
tically by implementation in terms of the common foundation. The spartan set of control primitives
together with the higher-level extensions allow us to accomodate elements of each style. A common
foundation also facilitates the prototyping of heterogeneous systems, such as a loosely coupled system
containing Butterflys and Connection Machines linked over the Darpanet, whose concurrent parts
must currently be programmed following different models.

1.4. Our approach

Our language starts with rich data models and operators along the lines of SETL [Schw86, Baxt89)
and REFINE [Refine88], which employ the high-level mathematical notions of sets, tuples (or se-
quences), and maps (or relations). REFINE also provides metaprogramming capabilities for syntac-
tic language extension and transformation.

We then extend this base by allowing statements and expressions to be first-class objects, that
is, to be themselves values in the data model. This permits us to express many notions of execution-




control in terms of operators over sequences of statements. We will see that constructs for alternative,
repetitive, nondeterministic and probabilistic execution may all be expressed in this fashion.

Next we augment this framework with a foundation for parallel programming that relies on a
shared-memory logical model. The starting point for our effort was the UNITY notation whose goal
is also to unify several disparate notions of parallel programming by reducing them to a common
foundation [Chan86]. UNITY relies on a shared-memory model in which each assignment statement
is an atomic indivisible action, and treats a program as a collection of these assignment statements
which execute chaotically until the state is stable. This reduces concurrent execution to fair inter-
leavings of statements. UNITY thus addresses the problem of interference — that events in one
processes’ concurrent execution can step in and alter the expected outcome in another processes’
computation — by enlarging the granularity of atomicity — that is, the size of effectively indi-
visible actions. These restrictions ensure processes interact in a disciplined way, and thus makes it
easier to reason about concurrent program behavior.

Our goal -support for rapid prototyping- is, however, rather different from the goals of UNITY
which address correctness of parallel programs developed from a specification. In the development
of a prototype we typically do not start with a complete specification; a trial program is our best
characterization. Hence we are concerned with expressability of programs, and to this end the
minimal control and synchronization concepts of UNITY are too low-level for our needs. Thus,
while we maintained some fundamental concepts from UNITY, the lowest level of our CPL provides
more concrete control constructs that encompass different notions of concurrency more directly (an
approach that UNITY correctly identifies as implementation-level detail) but which obviate the need
to necessarily express concurrent execution in terms of chaotic execution. Furthermore, our parallel
constructs, unlike those of UNITY, control interference of unprotected shared-variables without
resorting to overly constraining statement-level atomicity.

In a nutshell, our language features for parallelism rely on one simple parallel composition op-
erator, “||”, which specifies “cobegin/coend”-like parallelism unconstrained by any restrictions on
atomicity or temporal order of component execution. Communication between concurrent processes
is through shared variables. We then augment this model by providing a small set of mechanisms
which can carve the initial global state into shared and private variables, each process receiving
an independent copy of the private state. These private copies are independently updated, and
may be “merged” back into the global state at specifiable barrier synchronization points: at those
points a subset of the merged state may be reflected back into each private copy. We call this the
barrier-merge model.

In the rest of this paper we present the technical details of our language. First we give a brief
summary of the data types and sequential control constructs. We then discuss our basic control
constructs for parallelism. Our language is then used to express the Shiloach-Viskin algorithm for
deriving the connected components of a graph. This example serves well to show how we can easily
capture the CRCW model of PRAM. Next we examine how our construct, although embodying a
logical model of nondistributed state, can be extended to express distributed message-passing. We
then conclude by discussing unresolved issues and directions for future research, in particular the
exploration of how control constructs for concurrency, which are the focus of this paper, can be
integrated with the type system for our language being developed by Allen Goldberg and colleagues
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- Statements (i.e. assignments and procedure Invocations)
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Figure 1: Control Primitives for Sequential Programs

at the Kestrel Institute of Palo Alto, the third member of our CPL team.

2. Constructs for sequential programs

We will now give a brief introduction to some of the basics of our language, just enough so that
the notation and examples for concurrency given later will be understandable. The sequential core
of our language is conventional to the degree that it is assignment-based and block-structured; in
other words, program state is maintained in typed, scoped variables, and assignment statements
modify the state. However, Proteus uses the high-level data types and operations from SETL
[Schw86) and REFINE [Refine88]. Composite data values include sets (denoted by “{}”), tuples
(finite ordered sequences of arbitrary elements, denoted by “[ ]”), and pointwise-updatable maps
(sets of homogeneous 2-tuples). Sets and tuples may be generated by enumeration or by relative
abstraction of the form

[expr(x): x in set | pred(x)] (called a tuple-former).
For example, letting S be the set 0,1,2,3,4,5:

[i*i:i inS| (i < 3)] is [0,1,4]
Expressions include composite operations such as APL-like reduction:

(%op S) denotes reduce: %+[1,2,3,4] is (1+2+3+4) whichis10
as well as scan, which computes a sequence of reductions over all prefixes:

(%%op S) denotes scan: %%+([1,2,34] is [1,3,6,10]

)




(We note that these examples, and those to later appear, are expressed with a provisional syntax

that is likely to change.) Automatic extension of scalar operators to sequences is also supported:
3+[1,23] is [4,56], and (1,3]-[1,4] is [0,-1].

Furthermore, statements can be packaged into functions which employ a call-by-value-return pro-

tocol. As in ISETL [Baxt89], high-order functions are supported.

However, unlike SETL or ISETL we allow expressions and statements to be first-class citizens.
This allows the expression of familiar control primitives, such as “;”, in terms of reductions over
sequences of statements. Figure 1 summarizes how this technique, together with guarded commands
and repetitive execution, yields a powerful control regime. The example at the bottom of Figure 1
illustrates nicely how the powerful predicative constructions of the data model can specify statements
to be executed and to control the order of their execution only as necessary. This example performs
a sort of elements in the sequence a. It does this by first using a tuple-former to generate guarded
statements for all the possible combinations of ¢ and j. UNITY provides a similar but weaker
technique for the generation of sequences of statements: we generalize here to use the powerful
tuple-formers described previously. Returning to the example, with the reduction operator we then
insert the “[]” choice operator between the guarded commands, and then repetitively execute the
result until all guards are false. The behavior of the guards and the “[]” and “*” operators is
consistent with Dijkstra’s Guarded Command Language [Dijk78] — that is, a sequence of guarded
commands separated by “[]” will have one of the commands whose guard is true nondetermistically
selected for execution. One notable feature is that, like PCN [Chan90] and LISP [McCa60], we
represent the reduction operator as the first element in the sequence of statements to which is to be
applied. This is convenient for purposes of metaprogramming.

3. Constructs for concurrency: the barrier-merge model

Having presented this small but expressive set of primitives, we now turn to extensions for
specifying parallel execution and for regulating synchronization and communication. An overview
of our approach is shown in Figure 2. As a foundation for our parallel programming, we first adopt
a shared-memory model, where communication of parallel processes is through shared-variables.

3.1. Near-free parallel composition

We postulate only one notion of concurrent composition. For statements P1 and P2, the parallel
composition (P1 || P2) specifies concurrent execution of the two statements which we call processes.
No assumptions about the relative rates of progress in P1 and P2 are made. That is, we place no
additional constraints on the temporal ordering of events that constitute the parallel execution of
P1 and P2, beyond those implied by explicit synchronization commands. This yields, under our
model of execution, a view of the process (P1 || P2) as a collection of events that inspect and modify
a shared state partially ordered by constraints on their temporal precedence or simultaneity. This
lack of constraint is very close in spirit to the parallel composition operator of PCN [Chan90), which
also makes no assumption about atomicity or interleaving.

However, we must slightly qualify this assertion. Physical atomicity in execution occurs at
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Figure 2: Approach to concurrency




some level of granularity, usually at the memory reference level. We choose to reflect this fact in our
language by imposing one natural constraint — that any event within the partially-ordered event-set
of (P1 || P2) which is a memory-reference is also an atomic operation. We impose this qualification
for scalars and underlying scalar cells of tuples and sets, but make no such claim for atomicity when
referring to whole data aggregates. To control interference in this case, techniques to be described
later must be used.

3.2. State isolation

Accessibility of variables to P1 and P2, as well as synchronization, is specified through syntactic
mechanisms independent of the “||” operator. We achieve controlled access by modeling a division of
state into distributed and shared memory through the introduction of private and shared variables.
Our technique exploits the standard scope rules for block-structured languages, where the set of
variables in the state that are accessible is determined statically. Within a parallel composition
(P1 || P2) each process can reference any variable visible according to these scope rules; but now
each variable is specified to be in one of two disjoint sets: private and shared variables. A shared
variable is a single entry in the state, whereas a private variable has an entry in each process in the
construct which shadows the entry in the enclosing scope. The initial value of a private variable v is
the same in all processes in the construct and is the value of v in the enclosing scope. Operations on
shared variables may interfere with each other since they all refer to the same variable. Operations
on private variables can never interfere. This is in contrast to PCN which prevents interference by
constraining updatable shared variables to be write-once (“permanents”).

Figure 3 illustrates how this concept of private variables naturally fits with standard scoping
rules. We assume that by default all variables are shared, and must specify the names of private
exceptions. In this example, the shared variable g is seen by both P, and P,, but private copies
of ¢ are held by each. Finally, we also note that these shared and private variables have visibility
analogous to the “shared” and “value” declarations in Orca [Bal88): the difference there is that
the “value” declarations are embedded in the programs F;, and are not specified by naming private
exceptions in the parallel composition construct.

3.3. Barrier synchronization and merging state

While we have discussed how we can initially distribute information down from global state to private
copies for each process, we have not yet given mechanisms by which processes can communicate
information from the private state into global, nor mechanisms by which they can access this new
global state when it is shadowed by a private declaration. The method for doing this is a simple
primitive combining two-way communication and synchronization. The barrier-merge operation
merge vl’,...,vk’

may be invoked within the programs F;, and delays the process containing the operation until all
other processes in the composition have reached any merge operation, irrespective of mismatches
in the v1’,...,vk’ annotations. This effects barrier synchronization. At this point, each private
variable has its values in all processes combined under some specifiable merging function (typically
a function that arbitarily chooses a changed value from an arbitrary process), and the result updates
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Figure 4: Merging private states into the shared state

the value of the corresponding variable in the enclosing scope. This effects updating the global state
from the private states; we also wish to project a portion of this merged state back down into each
private state. Now the v!’,...,vk’annotations, each of which denotes a subset of the private variables,
come into play. The private variables v1’,...,uk’in each process are updated with the value of the
shadowed variable in the enclosing scope. If the v1’,...,vk’ specification is omitted, merge assumes
by default that all privates are to be updated from the enclosing environment. Furthermore, at
the top level invocation, the parentheses surrounding a parallel composition give an implied merge
operation, so that the final state of a parallel composition is determined by merging the final values
of its named private variables. If the final merge or v1’,...,vk’ specification is omitted, all private
variables are merged into the enclosing environment.

Figure 4 summarizes how barrier-merge works. Note that the exact nature of the merge function
f can be explicitly specified at the top level. This causes every merge operation to apply, for each
private variable, the reduction of the dyadic f across an ordered sequence of all processes’ values,
yielding the global update. This is similar in spirit to other uses of combining functions to resolve
conflict in message collisions [Stee86, Sabo88]. Such user-specifiable merge functions allow handling
of aggregate updates in other than default point-wise merge, for example to properly handle set
union. Furthermore, we will see in a later example (Shiloach-Viskin) how this merge technique
allows the simulation of CRCW PRAM, by letting the merge function be arbitrary selection from
updated values. Indeed, by suitably inserting a merge after every statement we can achieve lock-
step execution. It is also important to note that our construct generalizes UNITY simultaneous
assignment. The UNITY multiple assignment

X, ¥ Z == p(x,y,2), q(x,%,2), 1(x,,2)

.indicates that the values for x,y,z are all fetched, after which the expressions p,q,r are evaluated,
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« Serialization «S» is (awalit true -> S end)
Example: (shareda «a:=a+1»jj«a:=a+4»)
has the meaning a:=za+5

Figure 5: Point synchronization and serialization

and the result is stored. This is just a special case of our parallelism with fully private state:
(private x,y,z) { x:=p(x,y,2) || y: —q(x,y,z) | z:=r(x,y,2) )

But more than that, we give a meaning to “x , x := 1, 3", whereas UNITY requires that only
identical values can be simultaneously assigned to the same vana.ble (similar to a Common CRCW
PRAM model).

Indeed, having all variables private (sxmulta.neous assignment) or all variables shared (free paral-
lel) represent extrema on a spectrum of what variables are shared between the state. Since sometimes
we may want to carve up the space with a majority of private vanables, it might be easier to as-
sume that all variables are private and name shared e:ceptions, instead of dually assuming that
all variables are shared and naming private exceptions. This observation leads to a more general
technique for exception naming:

allsharedexcept V1,...,Vk
allprivateexcept V1,...,Vk

which encompasses carving from either end.

3.4. Point Synchronization

Our last control primitive for parallelism is a conditional await construct. The “point synchroniza-
tion” operation:

await Bl = >S1[]... [Bn->Sn end
delays the process containing the operation until a state is reached in which one of the Bi holds,
and then executes the corresponding Si in that state while excluding all other processes. It cap-
tures both the concepts of Hoare’s conditional wait (“wait(B)”) [Hoar74] and of Dijkstra’s selective
communication {Hoar85]. Furthermore,

await true — > S end

11




is equivalent to atomic execution of S; as a shorthand we write this as “« s >”. Figure 5
summarizes the action of await and shows a simple example of serialization, which mcxdenta.lly also
captures the semantics of UNITY’s statement-level atomicity.

4. An example: the Shiloach-Vishkin algorithm

We now give an application of our language in the specification of the Shiloach-Vishkin parallel con-
nectivity algorithm presented in [Schi82] using the CRCW PRAM execution model. The objective
of the algorithm is to identify the connected components of an undirected graph G with vertices V
and edges E, specifically by assigning the same label to each vertex within a connected component
while giving each component a unique label. The execution model assumed by the parallel algo-
rithm falls into the class of Arbitrary CRCW (Concurrent Read Concurrent Write) PRAM, that is,
all processors have access to a common memory, synchronize after each step of the computation, and
resolve conflicts in simultaneous writes by arbitrary selection. In addition to these synchronization
and communication disciplines, the components of the algorithm that are challenging to express
within this parallel model are:

o global control ~ to determine termination

o data parallelism — the d:gree of parallelism is determined by the structure of the graph.
Informally, the algorithm as described by Shiloach and Vishkin is as follows. We are given an
undirected graph G with n vertices and m edges. We represent the vertices of the graph G as
numbers in the range 1..n, and the edges as a set E of pairs of vertex numbers (both (v, w) and
(w,v) are in E if (v, w) is an edge in G). To record the connected components, we use an auxiliary
map D which holds, for each vertex, a pointer to another vertex or to itself. D represents a pointer
graph G’ of edges (v — D(v)) which, although changing throughout execution, will always be a forest
of rooted trees plus self-loops. By the end of the algorithm, for each vertex v, D(v) is constructed
to point to the smallest numbered vertex in its connected component in G, so that the vertices in
each connected component form a rooted star in G'.

The algorithm begins by implicitly allocating a processor to each vertex and to each edge. Each
D(v) is initialized to v, thus making each vertex in the pointer graph a root. The algorithm then
repeats the following steps urtil D is stable:

1. Shortcutting: paths in G’ are halved in length by pointer doubling at each vertex v: D(v) :=
D(D(V)).

2. Hooking trees onto neighbor’s trees: Each root v in G’ (and each of its children v before
shortcutting) tries to attach its tree to a neighboring smaller-numbered component reached
by some edge (v,w) in G. We “hook” by redirecting the root pointer of the G’-tree to the
neighbor w’s smaller-numbered G’-parent.

3. Hooking stagnant trees: For trees in G’ whose roots are stagnant (nothing was just shortcut to
it nor attached to it), we try hooking roots and children as above, except to any other different
component, not just smaller-numbered.

4. Shortcutting again.

12




We faithfully express this algorithm in Proteus below, capturing CRCW PRAM behavior by using
independent-state parallelism and explicit barrier synchronization to combine the independent states
at each step. Note that we use the abbreviation of “z,y := p, ¢” for “(allprivate) (z:=p || ¥y :=¢)".

Algorithm (Shiloach+ Vishkin):
~let V = [1..n] be the vertex labels
~letE={(v,w)|v,win Vand 3 an edge fromv tow in G }

s i=t:=1; // Iteration number
D :=[i:iin [l..n]}; // Pointer graph: every node initially points to itself
Dp := [1..n}; // Previous values of D in step s-1
Q :=[0:iin [1..n]}; // Last step D(i) updated (not stagnant node if =s).
repeat

(private D) % [ // Shortcutting

Dp(i),D(i) := D(i),D(D(i));
D(i)#Dp(i) — Qi) :=s
:iin V]
(private D,Q) %| [ // Hook trees
var root,nbor := D(v),0; o
D(v)=Dp(v) and D(w)<D(v) — nbor,D(D(v)) := D(w),D(w);

merge;
D(root)=nbor — Q(nbor) :=s; // See if hook chosen in CRCW
merge; // Hook stagnant trees next
D(v)=D(D(v)) and Q(D(v))<s and D(v)#D(w) — D(D(v)) := D(w)
:(v,w)inE J;
(private D,t) %| [ // Shorteutting and detection of termination

D(i) := D(D(i);
Qi)=s — t+=1 :iinV]
s +=1;
until (s != t); // All stagnant

Some issues are brought to light by the example. The first concerns the notion of “merged state”.
It is semantically appealing to say that the state following the closing barrier of the parallel construct
is the pointwise merge of the individual variables, with a (possibly specified) reduction function
applied between values of the same variable. But this doesn’t quite model the write semantics of
the CRCW PRAM, because unmodified values have the same status as modified values. Using the
standard combining function arb the final value of s in the statement

s:=0; [skip || s:=10]

could be 0, which could not be an outcome under PRAM execution. This situation comes up in the
algorithm: if no process updates Q, then the algorithm can terminate. Under the simple merge rule,
we could choose the final state for Q to be from a process that happened not to update Q causing
premature termination. Consequently we have to define a somewhat more complex value domain
which includes whether a value has been assigned. We-might do this by augmenting the domain with
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- Build CSP primitives by modeling message queues for
each channel as a shared sequence

»22" := func(C) (
var v;

await [ Channel[C] != om and §Channel{C] > O
=> take v from Channel[C] ]:
return v )

“1tv :m func(C, v) (
await [ Channel{C] = om or #Channel(C] = O
=> Channel [C] withm v ];
await [#Channel([C] = 0 «> om ] ) // Block until reac

- May similarly build Linda using shared message queues
- Easy to build CSP on top of Linda

Figure 6: Extensions for distributed message-passing

a new value L (undefined) which acts as an identity for the merge function. Alternatively, in the
object-oriented style we might provide a “changed” field for each variable, which the user may set
and which indicates whether participation in merge occurs. We are investigating these possibilities,
as well as whether the merge function should be a function on the processor-indexed sequence of
privates, rather than a binary function applied in an induced reduction tree.

A subtle aspect of the algorithm (which led to an apparent program error in [Schi82}) is that,
when hooking stagnant trees, even though D(v) may be attached to many vertices, only the actual
vertex attached to (as determined by the merge of D) should change its value of Q. We solve this
by merging and testing for successful update of D before updating Q.

5. Extensions for distributed message-passing

We developed these barrier-merge primitives after analyzing a variety of different concurrent
programs and programming languages. A larger demonstration of their efficacy is their ability to
be extended to handle distributed message-passing, in the simplest case to express the blocking
communication of CSP. Figure 6 shows how CSP primitives for reading and writing can be easily
developed by modeling the message queues for each channel as a shared sequence, and ensuring
mutual exclusion with the “await”. Like OCCAM, in this example we impose the simplifying
restriction that “sends” cannot appear in guards. In a similar fashion we can build Linda using
shared message queues and some pattern-matching capabilities of our langauge. Indeed, once Linda
is built, it is easy to build CSP on top of Linda [Carr89).
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As a final aside, we note that the inclusion of statements as values permits us to express a
variety of systems in Proteus with 2 minimum of extra definitions. For example, the single paralle]

composition operator allows us to express concurrent execution in the form of process parallelism -

or data parallelism. For statements P1,...,Pn:
(P1] P2) is process parallelism
%) [P(i):iin 1..N] is data parallelism.

6. Summary and future work

In this paper we have introduced some basic features of Proteus. We focused in particular on the
constructs for expressing parallelism, and presented a simple set of primitives which can serve as the
foundation for a layered language which can embrace a wide spectrum of concurrent programming
models. Barrier and per-process synchronization permit asynchronous and synchronous parallel
programs to be expressed, while distributed and shared memory computation are expressed with
the designation of variables as private or shared across a parallel composition. With these facilities
we are able to express PRAM and CSP concurrency within a singl= setting. While we have presented
here only an informal semantics for Proteus, we are developing a formal operational semantics based
on the lambda calculus. -

Although we are convinced tha.t we have a reasonable foundation for the construction of a wide
spectrum of parallel programs, we question whether a higher-level approach to message-passing,
perhaps in the form of concurrent objects, might be more appropriate. This concern arises in part
because the barrier-merge may be too restrictive in the specification of process lifetimes. Also the
issue remains of whether concurrent access to shared variables is too unmanagable; that is, whether
unprotected non-private variables are too complicated to handle.

We are thus looking at evolving some form of higher-level shared-value construct. based on object-
oriented techniques [Agha90]. This effort dovetails nicely with the type system being developed for
our language by Allen Goldberg and colleagues at the Kestrel Institute, the third member of our
CPL team. Their Data Type Refinement System [Blai90] extends the ML type system [Miln84] to
include axiomatic description of operators, and a simple form of dependent types that supports a
reasonable notion of static checking. A significant challenge has been to incorporate object-oriented
paradigms (structural subtyping, overloading) into an ML-style type system. In this area we follow
an approach similar to Modula 3. The module construct for our type system generalizes ML’s
functors and modules; its theoretical basis bears strong relation to the parameterized modules in
OBJ3. Techniques for composing modules via such parameterization, as well as by refinement, rely
on the concept of theory interpretations, which translate modules over one vocabulary to modules
over another.

We envision using this module system to encapsulate shared objects, specifying methods which
can execute concurrently as well as constraints which enforce required exclusion. This integration of
control and types is similar in concept to that employed by Reality of Stanford/TRW (another CPL
team), although we as yet have not decided whether to use trigger-based asynchronous message-
passing as the basis of concurrent processes interaction, as they do [Belz90].
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Finally, time plays a very important role in concurrent systems. We are developing some tech-
niques to associate execution time under a given execution model with the execution of a prototype.
Hopefully this will enable the specification and evaluation of real-time systems, another critical area

of prototyping.
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